Performance of RBF neural networks for array processing in impulsive noise environment

نویسندگان

  • Wenqiang Guo
  • Tianshuang Qiu
  • Hong Tang
  • Wenrong Zhang
چکیده

This paper addresses the array processing problems (mainly focuses on direction of arrival estimation and beamforming) of mobile communication system using linear antenna arrays in high impulsive noise environment. One possible way to simulate the impulsive noise is to introduce alpha-stable distribution as the noise model. In order to reduce the computational complexity, the problems of DOA and beamforming are approached as a nonlinear mapping which can be modeled using a suitable radial-basis function neural network (RBFNN) trained with input–output pairs. This paper discusses the application of a three-layer RBFNN to perform the DOA estimation and beamforming in presence of impulsive noise. The performance of the network is compared to that of the algorithms based fractional lower-order statistics. Simulations show that the RBFNN is appropriate to approach the DOA estimation and beamforming. At the same time, the RBFNN substantially reduces the computation complexity. © 2007 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition

Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...

متن کامل

Neural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features

This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...

متن کامل

Robust Direction of Arrival (DOA) Estimation Using RBF Neural Network in Impulsive Noise Environment

The DOA problem in impulsive noise environment is approached as a mapping which can be modeled using a radial-basis function neural network (RBFNN). To improve the robustness, the input pairs are preprocessed by Fractional Low-Order Statistics (FLOS) technique. The performance of this network is compared to that of the FLOM-MUSIC for both uncorrelated and correlated source. Numerical results sh...

متن کامل

Radar Signal Detection In Non-Gaussian Noise Using RBF Neural Network

In this paper, we suggest a neural network signal detector using radial basis function (RBF) network. We employ this RBF Neural detector to detect the presence or absence of a known signal corrupted by different Gaussian, non-Gaussian and impulsive noise components. In case of non-Gaussian noise, experimental results show that RBF network signal detector has significant improvement in performan...

متن کامل

Prediction of Deformation of Circular Plates Subjected to Impulsive Loading Using GMDH-type Neural Network

In this paper, experimental responses of the clamped mild steel, copper, and aluminium circular plates are presented subjected to blast loading. The GMDH-type neural networks (Group Method of Data Handling) are then used for the modelling of the mid-point deflection thickness ratio of the circular plates using those experimental results. The aim of such modelling is to show how the mid-point de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Digital Signal Processing

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2008